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Abstract. Based on our work hep-ph/0510121, we discuss further the numerical study of classical SU(2)
3+1-D Yang-Mills equations for matter produced in a high-energy heavy-ion collision. The growth of the
amplitude of fluctuations as exp (Γ

√

g2µτ) (where g2µ is a scale arising from the saturation of gluons in
the nuclear wave function) is shown to be robust over a wide range of initial amplitudes that violate boost
invariance. We argue that this growth is due to a non-Abelian Weibel instability, the scale of which is set
by a dynamically generated plasmon mass. We discuss the relation of Γ to the prediction from kinetic
theory.

PACS. 25.75.Nq Quark deconfinement, quark-gluon plasma production, and phase transitions – 11.10.Wx
Finite-temperature field theory – 12.38.Mh Quark-gluon plasma

1 Introduction

One objective of the experiments done at ultra-relativistic
heavy-ion colliders such as RHIC and, in future, the LHC,
is to understand the properties of very hot and dense par-
tonic matter in QCD. This requires understanding how the
coherent wave functions of the incoming nuclei decohere,
possibly forming a thermal Quark Gluon Plasma (QGP).
At high energies, the small-x (or wee) partons determine
the properties of nuclear wave functions. Their proper-
ties can be formulated in an effective field theory called
the Color Glass Condensate (CGC) [1]. A semi-hard scale
Qs(x)À ΛQCD, the “saturation” scale [2], arises naturally
in this approach and grows with energy; weak-coupling
techniques are therefore feasible. Furthermore, the small-x
wave functions of the incoming nuclei can be treated as
classical fields with large occupation numbers [3]. This
enables the description of nuclear collisions in terms of
solutions of classical Yang-Mills equations with the fields
representing the small-x partons, and light cone currents
describing the hard valence partons [4]. The latter can be
modeled as

Jµ = δµ+ρ1(x⊥)δ(x
−) + δµ−ρ2(x⊥)δ(x

+), (1)

where the color charge densities ρ1,2 of the two nuclei are
independent sources of color charge (x± = (t± z)/2). The
δ-function sources ensure that the fields are boost invari-
ant, namely, independent of the space time rapidity η,
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defined as η = a tanh(z/t). The Yang-Mills equations can
therefore be expressed in terms of the two transverse direc-
tions (x⊥) and the proper time τ , defined as τ =

√
t2 − z2.

The initial conditions can be determined by matching
the Yang-Mills equation in the four light cone regions,
at τ = 0, to determine self-consistently the fields in the
forward light cone in terms of those before the collision.
These latter classical fields can be computed analytically
in the CGC framework.

In the McLerran-Venugopalan model (MV) [3] for large
nuclei, the sources of color charge are Gaussian distributed

〈ρai (x⊥)ρbj(y⊥)〉 = g4µ2δijδ
abδ2(x⊥ − y⊥) , (2)

where g2µ is the dimensionful momentum scale in the
problem. This scale is closely related to the saturation
scale Qs which, in the classical effective theory, is defined
as Q2

s = g4µ2Nc ln(g
2µ/ΛQCD)/2π. For the initial con-

ditions corresponding to configurations of color sources
of each of the two nuclei, the Yang-Mills equations can
be solved numerically, and the final gauge field configura-
tions averaged over the sources, to determine energy and
number distributions [5].

It is clear that for all finite
√
s the ansatz of δ-function

sources in eq. (1) has to be modified in order to imple-
ment the fact that the nuclei will not be contracted into
infinitely thin sheets. More important, however, are the ef-
fects of quantum corrections, which may be of order unity
over rapidity scales ∼ 1/αs. These are not included in the
MV model but arise from small-x quantum evolution of
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the classical fields [1]. Consequently, one must deal with
functions having a finite width in x±, respectively. For a
single nucleus it is still possible to solve the Yang-Mills
equations classically and obtain the Weizsäcker-Williams
fields. For two nuclei, however, the problem becomes more
involved, simply because the nuclei will interact for a finite
time and the single nucleus solutions before the collision
will be distorted during this time span. Ignoring the de-
tails of this process, the main difference with respect to
the cases considered so far [5] will be the emergence of
rapidity fluctuations and consequently a breaking of the
boost invariance of the small-x fields. In what follows, we
will concentrate on studying the effect of rapidity fluc-
tuations by numerically solving the Yang-Mills equations
after the collision (based on ref. [6]); to keep the analysis
as simple as possible, we assume the initial distortions of
exact boost invariance to be very small. The reasons for
this are two-fold. One is to connect our results to pub-
lished results [5]. The other reason, as we will discuss, is
to study the effects of the Weibel instabilities over several
decades in the magnitudes of amplitudes.

This work is organized as follows: In sect. 2 we dis-
cuss why this study is connected to the phenomenon of
non-Abelian plasma instabilities [7–12], before providing
details of our setup in sect. 3. Our results are presented
in sect. 4.

2 Motivation

At earliest times τQs ≤ 1, typical gluon occupation num-
bers are large and thus the system is described most ap-
propriately in terms of nonlinear gluonic fields, which
should be accessible by simulating classical Yang-Mills
dynamics [5]. However, because of the rapid longitudi-
nal expansion, the gluon occupation number drops until
the non-linearities become so weak that the hard modes
(p ∼ Qs) can be described as on-shell particles. In this
regime (which should be reached for τQs ≥ 1), the dy-
namics of the system is in terms of hard particles cou-
pled to soft (k ¿ gQs) fields, so a Vlasov-type kinetic
approach should be appropriate to describe the system.
Consequently, at times τQs ∼ 1, one would expect both
classical and kinetic theory descriptions to offer a fair ap-
proximation of the system dynamics.

Another consequence of the longitudinal expansion is
that the typical longitudinal gluon momentum, for a fixed
slice in rapidity, becomes smaller as pz ∼ 1/τ . Since the
transverse gluon momentum stays approximately constant
p⊥ ∼ Qs, the gluon distribution function f(p) tends to be-
come more and more anisotropic (until scatterings become
important at very late times).

Using a Vlasov approach it has been shown [7–12]
that when expansion effects are negligible, systems with
an anisotropic momentum space distribution function are
subject to the presence of so-called plasma instabilities,
with a typical exponential growth rate γ proportional to

the soft scale m∞,

γ ∼ m∞√
2
, m2

∞ = g2Nc

∫

d3p

(2π)3
f(p)

|p| (3)

in the limit of very strong anisotropies [9]. These in-
stabilities manifest themselves as exponentially growing
magnetic fields which in turn reduce the momentum
anisotropy, both by transferring energy from hard to soft
excitations as well as by bending hard-particle trajecto-
ries.

Because of the relation between classical field dynam-
ics and kinetic theory at times τQs ∼ 1 conjectured above,
one would expect to see some manifestation of these in-
stabilities when simulating classical Yang-Mills dynamics.
To simulate an expanding metric, we solve the Yang-Mills
equations in (τ, η,x⊥) co-ordinates. In momentum space,
the conjugate momenta are (kτ , kη,k⊥), respectively. The
Yang-Mills fields for “soft” kη modes will thus be sensitive
to anisotropic distributions of modes in (k⊥, kη), thereby
triggering an instability of the Weibel type. It was pre-
dicted by Arnold, Lenaghan and Moore [9] that in an ex-
panding system such an instability would grow as exp(

√
τ)

rather than exp(τ). As shown in ref. [6], this is precisely
what happens. Below, we discuss in some detail the setup
of the numerical problem and some of the results.

3 Setup

In Aτ = 0 gauge, the gluonic part of the QCD action has
the form [5]

S =

∫

dτdηdx⊥τ Tr

[

F 2
τη

τ2
+ F 2

τi −
F 2
ηi

τ2
−

F 2
ij

2
+

jηAη

τ2

]

=

∫

dτdηdx⊥L, (4)

where Fµν = ∂µAν−∂νAµ+ig[Aµ, Aν ] is the field strength
in the fundamental representation with F µν = Fµν

a τa and
[τa, τb] = ifabcτc, Tr τaτ b = δab

2
. In the following we shall

ignore effects of the current jη. This is justified if we limit
ourselves to a small region around η = 0. With this re-
striction in mind we derive the conjugate momenta from
the Lagrangian eq. (4),

Ei =
∂L

∂(∂τAi)
= τ∂τAi,

Eη =
∂L

∂(∂τAη)
=

1

τ
∂τAη (5)

with which we construct the Hamiltonian density

H = Ei(∂τAi) + Eη(∂τAη)− L

= Tr

[

E2
i

τ
+

F 2
ηi

τ
+ τE2

η + τF 2
xy

]

. (6)

Here transverse coordinates x, y have been collectively la-
beled by the Latin index i. Using finally ∂H/∂Eµ = ∂τAµ,



P. Romatschke and R. Venugopalan: Weibel instability in the melting color glass condensate 73

∂H/∂Aµ = −∂τEµ, Hamilton’s equations for the fields
and their conjugate momenta are

∂τAi =
Ei

τ
, ∂τAη = τEη,

∂τEi = τDjFji + τ−1DηFηi, ∂τEη = τ−1DjFjη.

Since it will be used in the following, we also intro-
duce two relevant components of the stress-energy tensor
in (τ, x, y, η) coordinates,

T xx + T yy = 2τ Tr
[

F 2
xy + E2

η

]

, (7)

τ2T ηη = τ−1 Tr
[

F 2
ηi + E2

i

]

− τ Tr
[

F 2
xy + E2

η

]

. (8)

3.1 Initial conditions —boost-invariant case

In the case of exact boost invariance, one obtains the ini-
tial conditions by matching the equations of motions be-
fore the collision (when there are only undisturbed sin-
gle nucleus solutions) at the point x± = 0 and along the
boundaries x+ = 0, x− > 0 and x− = 0, x+ > 0. Omitting
the details worked out in [1,5], the result for the fields and
momenta at time τ = 0 is

Ai(x⊥) = α1,i(x⊥) + α2,i(x⊥), Aη(x⊥) = 0,

Ei(x⊥) = 0, Eη(x⊥) = ig[α1,i(x⊥), α
i
2(x⊥)],

αi
1,2 =

i
g
U1,2∂

iU †1,2,

U1,2 = P exp
(

−i
∫ x∓

−∞
dx′±Λ1,2(x⊥, x

′
±)
)

, (9)

where P denoting path-ordering, ∆Λ1,2(x⊥, x
±) =

−ρ1,2(x⊥)δ(x±) and ρ1,2 are to be determined from
eq. (2).

3.2 Initial conditions including rapidity fluctuations

Ignoring the details of the initial rapidity profile we simply
start with the boost-invariant field configuration and dis-
turb it by adding small random rapidity variations. Specif-
ically, one has Ai = Ai, Aη = 0, Ei = δEi, Eη = Eη+δEη,
with DiδEi + DηEη = 0 at initial time τ = τinit. The
rapidity-dependent functions δEi, δEη are constructed as
follows: for δEi we draw random configurations δĒi(x⊥)
in the transverse plane, 〈δĒi(x⊥)δĒi(y⊥)〉 = δ2(x⊥ − y⊥)
and subsequently multiply by a random function f(η) =
∂ηF (η) with dimensionless amplitude ∆¿ 1,

〈F (η)F (η′)〉 = ∆2δ(η − η′) (10)

to get δEi(xi, η) = f(η)δĒi(xi); δEη is then constructed
as δEη = −F (η)DiδĒi(xi).

Thus, by construction, one has added random rapidity
fluctuations of the amplitude ∆ to the system which obey
Gauss’s law. An advantage of this construction is of course
that one can use periodic boundary conditions in the η-
direction, which for a lattice simulation is somewhat more
convenient.

3.3 Lattice simulations

To simulate the system we discretize space time and use
an adapted leap-frog algorithm to evolve the system in
time [5] (details will be given elsewhere [13]). The lattice
parameters (all of which are dimensionless) are

– N⊥, Nη, the number of lattice sites in the trans-
verse/longitudinal direction;

– g2µa⊥, aη, the lattice spacing in the trans-
verse/longitudinal direction;

– τinit/a⊥, the time at which the 3-dimensional simula-
tions are started;

– δτ , the time stepping size;
– ∆, the initial size of the rapidity fluctuations.

Of these, only the combinations g2µa⊥N⊥ ≡ g2µL and
aηNη ≡ Lη (which correspond to the simulated system
dimensions) have physical meaning; the continuum limit
is approached by keeping these fixed while sending δτ → 0,
g2µa⊥ → 0, aη → 0. For the 3-dimensional simulations,
we still have to choose a value for τinit, which should be
such that for ∆ = 0 we stay very close to the result from
the 2-dimensional simulations (for all of which τinit = 0).
Thus, we set

τinit = 0.05 a⊥, (11)

but have checked that our results stay the same when
choosing τinit/a⊥ = 0.025, 0.1, respectively.

4 Evolution of rapidity fluctuations and a

Weibel instability in expanding matter

An interesting quantity for the longitudinal dynamics is
the energy momentum tensor component T ηη (see eq. (8)),
of which we study the Fourier transform with respect to η,

T̃ ηη(kη, k⊥ = 0) =

∫

dη exp(iη kη)〈T ηη(x⊥, η)〉⊥, (12)

where 〈 〉⊥ denotes averaging over the transverse coordi-
nates (x, y). Apart from kη = 0, this quantity would be
strictly zero in the boost-invariant (∆ = 0) case. We have
checked that this is indeed the case. For finite ∆, how-
ever, T̃ ηη is in general non-vanishing for arbitrary kη and
possesses a maximum amplitude for one specific kη. De-
termining this maximum amplitude for each time step and
averaging over many random initial conditions, we obtain
the curve shown in fig. 1. The curve is for g2µL = 22.6. In
contrast to the curve shown in ref. [6] (for g2µL = 67.9),
where the initial seed (violating boost invariance) was cho-
sen to be very small (∆ ' 10−11), the seed here is 4 or-
ders of magnitude larger (∆ ' 10−7). Nevertheless, for
the same g2µL (see table 1 in ref. [6] also included below),
the fit to the growth rate Γ is consistent with the result
quoted in ref. [6].

Another feature of our simulations that was not clear
from our simulations with very small seeds was the flat-
tening of the amplitude, the onset of which is seen in the
figure at g2µτ ≈ 1000. We have checked (by varying lattice
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Fig. 1. The maximum Fourier mode amplitudes of τ 2T ηη for
g2µL = 22.6, N⊥ = Nη = 32, Lη = 1.6. Also shown is a best
fit with a exp

√
τ behavior. The flattening out of the data at

late times is due to the non-Abelian interactions stopping the
instability growth.

spacing by a factor of 8) that this phenomenon is rather
insensitive to the ultraviolet modes, and appears to be a
consequence of the “non-Abelianization” of the amplitude.
In other words, the instability is cut-off when the non-
Abelian self-interactions of the soft modes become impor-
tant (also seen in Hard-Loop simulations without expan-
sion [12]). More quantitative studies of this phenomenon
are presented in [13].

From fig. 1, one can see that from g2µτ ≈ 150 onwards,
there is rapid growth for which a best fit (up to times
g2µτ ∼ 1000) to the functional form c0 + c1 exp(Γfitτ

c3)
gives Γfit = 0.502 ± 0.01 for c3 = 0.5; the coefficients c0,
c1 are small numbers proportional to the initial seed.

In the presence of a Weibel instability, one expects
τ2T̃ ηη to grow as exp(∼ γτ). For a system without expan-
sion, γ ∼ m∞ does not change as a function of τ and thus
the instability manifests itself through modes growing as
∼ exp(τ). However, as argued in ref. [9], the soft scale m∞

behaves as m2
∞ ∼ 1/τ in an expanding system. Therefore,

the functional form of the growth is changed to exp(
√
τ).

Our results confirm that this functional form is favored by
a best fit to our data in fig. 1.

We can confirm this interpretation by also determining
m∞ directly in our simulation. This is done by calculating1

the mass gap ω(k⊥ = 0) of the gluon dispersion relation
defined as [5]

ω(k⊥) =

1

τ

√

Tr [Ei(k⊥)Ei(−k⊥) + τ2Eη(k⊥)Eη(−k⊥)]

Tr [Ai(k⊥)Ai(−k⊥) + τ−2Aη(k⊥)Aη(−k⊥)]
, (13)

which should be proportional to the soft scale ω(k⊥ =

0) ∼ m∞. We find [6] ω(k⊥ = 0) = κ0
√

g2µ/τ , consistent

1 The effect of small longitudinal fluctuations on transverse
quantities should be rather small. Thus, we calculate this mass
gap from a 2+1-dimensional simulation rather than in the 3+1-
dimensional case out of computational convenience.

with the expectation from [9,14]. Interpreting ω(k⊥ = 0)
as the plasmon mass ωpl, we make use of the relation
ω2pl = 2/3m2

∞ [6] to obtain the quantitative estimate

m∞ = κ0
√

3g2µ/(2τ) for our simulation.
If we take the growth rate in the static case and make

the change γstatτ → γ(τ)τ with γ(τ) = m∞(τ)/
√
2 for the

expanding system, we can define the “theoretical” growth

rate Γtheory
√

g2µ τ = 2γτ . Obtaining Γfit by a best fit to
the data (e.g., in fig. 1) for different values of g2µL, we
can compare this result to Γtheory, finding

g2µL Γtheory =
√
3κ0 Γfit

22.6 0.526± 0.003 0.502± 0.01

67.9 0.447± 0.003 0.427± 0.01

90.5 0.49± 0.004 0.46± 0.04

However, a consistent treatment would require that the
growth rate in the expanding case is exp(2

∫ τ

0
dτ ′γ(τ ′)); if

we assume as previously that γ(τ ′) = m∞(τ)/
√
2, one

obtains an additional factor of 2 in the ratio of Γ/κ0 rel-
ative to Γfit. Understanding this difference of a factor of
2 requires a more careful study of the correspondence be-
tween the dynamics of expanding fields in our case and
that in the static HTL case. In particular, it is important
to investigate how ωpl that we extract from the lattice
relates to the plasmon frequency in Hard Thermal Loop
simulations. Studies in this direction are in progress.
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